Condition based maintenance optimization for multi-component systems using proportional hazards model
The objective of condition based maintenance (CBM) is typically to determine an optimal maintenance policy to minimize the overall maintenance cost based on condition monitoring information. The existing work reported in the literature only focuses on determining the optimal CBM policy for a single...
Saved in:
Published in | Reliability engineering & system safety Vol. 96; no. 5; pp. 581 - 589 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The objective of condition based maintenance (CBM) is typically to determine an optimal maintenance policy to minimize the overall maintenance cost based on condition monitoring information. The existing work reported in the literature only focuses on determining the optimal CBM policy for a single unit. In this paper, we investigate CBM of multi-component systems, where economic dependency exists among different components subject to condition monitoring. The fixed preventive replacement cost, such as sending a maintenance team to the site, is incurred once a preventive replacement is performed on one component. As a result, it would be more economical to preventively replace multiple components at the same time. In this work, we propose a multi-component system CBM policy based on proportional hazards model (PHM). The cost evaluation of such a CBM policy becomes much more complex when we extend the PHM based CBM policy from a single unit to a multi-component system. A numerical algorithm is developed in this paper for the exact cost evaluation of the PHM based multi-component CBM policy. Examples using real-world condition monitoring data are provided to demonstrate the proposed methods. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/j.ress.2010.12.023 |