In-Vitro Cytotoxicity and Cell Cycle Analysis of Two Novel bis-1,2, 4-triazole derivatives: 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl)-1,2,4-triazol-3-yl]-butane (MNP-16)

In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-tri...

Full description

Saved in:
Bibliographic Details
Published inNucleosides, nucleotides & nucleic acids Vol. 30; no. 11; pp. 873 - 885
Main Authors Purohit, Madhusudan N., Panjamurthy, Kuppusamy, Elango, Santhini, Hebbar, Karteek, Mayur, Yergeri C., Raghavan, Sathees C.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis Group 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC 50 of 3-5 μM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G 1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1525-7770
1532-2335
DOI:10.1080/15257770.2011.608395