Frame synchronization in frequency uncertainty

This paper addresses the problem of robust frame synchronization for TDM/TDMA systems in the presence of frequency errors, accomplished through data-aided recognition of the Unique Word (UW) preamble in the transmission flow. Robust detection design is performed applying, through approximations, the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 58; no. 4; pp. 1235 - 1246
Main Authors Pedone, R., Villanti, M., Vanelli-Coralli, A., Corazza, G.E., Mathiopoulos, P.T.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the problem of robust frame synchronization for TDM/TDMA systems in the presence of frequency errors, accomplished through data-aided recognition of the Unique Word (UW) preamble in the transmission flow. Robust detection design is performed applying, through approximations, the Maximum Likelihood (ML) criterion coupled to Post Detection Integration (PDI), to obtain a novel detector identified as Balanced-GPDI (B-GPDI). This new approach considerably outperforms other schemes available in the literature, at the cost of a moderate complexity increase. This is possible thanks to an optimized use of coherent accumulation, which enhances the correlation term in the decision variable, along with highly accurate modeling of the energy correction factor. To limit complexity increase and memory requirements, several approximations of the exact B-GPDI are proposed and discussed in the paper, to provide the designer with practical solutions that are still able to outperform other approaches in specific application scenarios. In particular, approximations for low and high Signal-to-Noise Ratio (SNR) are presented. Different application scenarios are considered in the paper for numerical analysis. In particular, the cases of forward link Continuous Transmission (CTX) and return link Burst Transmission (BTX) are addressed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2010.04.080350