On Gaussian MIMO BC-MAC Duality With Multiple Transmit Covariance Constraints

Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respect...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 58; no. 4; pp. 2064 - 2078
Main Authors Lan Zhang, Rui Zhang, Ying-Chang Liang, Yan Xin, Poor, H. Vincent
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respective dual multiple-access channel (MAC) problems, which are easier to deal with due to their convexity properties. The conventional BC-MAC duality has been established via BC-MAC signal transformation, and is applicable only for the case in which the MIMO BC is subject to a single transmit sum-power constraint. An alternative approach is based on minimax duality, which can be applied to the case of the sum-power constraint or per-antenna power constraint. In this paper, the conventional BC-MAC duality is extended to the general linear transmit covariance constraint (LTCC) case, which includes sum-power and per-antenna power constraints as special cases. The obtained general BC-MAC duality is applied to solve the capacity region computation for the MIMO BC and beamforming optimization for the multiple-input single-output (MISO) BC, respectively, with multiple LTCCs. The relationship between this new general BC-MAC duality and the minimax duality is also discussed, and it is shown that the general BC-MAC duality leads to simpler problem formulations. Moreover, the general BC-MAC duality is extended to deal with the case of nonlinear transmit covariance constraints in the MIMO BC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2177760