On Gaussian MIMO BC-MAC Duality With Multiple Transmit Covariance Constraints
Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respect...
Saved in:
Published in | IEEE transactions on information theory Vol. 58; no. 4; pp. 2064 - 2078 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respective dual multiple-access channel (MAC) problems, which are easier to deal with due to their convexity properties. The conventional BC-MAC duality has been established via BC-MAC signal transformation, and is applicable only for the case in which the MIMO BC is subject to a single transmit sum-power constraint. An alternative approach is based on minimax duality, which can be applied to the case of the sum-power constraint or per-antenna power constraint. In this paper, the conventional BC-MAC duality is extended to the general linear transmit covariance constraint (LTCC) case, which includes sum-power and per-antenna power constraints as special cases. The obtained general BC-MAC duality is applied to solve the capacity region computation for the MIMO BC and beamforming optimization for the multiple-input single-output (MISO) BC, respectively, with multiple LTCCs. The relationship between this new general BC-MAC duality and the minimax duality is also discussed, and it is shown that the general BC-MAC duality leads to simpler problem formulations. Moreover, the general BC-MAC duality is extended to deal with the case of nonlinear transmit covariance constraints in the MIMO BC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2011.2177760 |