S2P2-the chloroplast-located intramembrane protease and its impact on the stoichiometry and functioning of the photosynthetic apparatus of A. thaliana

S2P2 is a nuclear-encoded protease, potentially located in chloroplasts, which belongs to the zinc-containing, intramembrane, site-2 protease (S2P) family. In cells, most of the S2P proteases are located within the chloroplasts, where they play an important role in the development of chloroplasts, m...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1372318
Main Authors Ciesielska, Maria, Adamiec, Małgorzata, Luciński, Robert
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:S2P2 is a nuclear-encoded protease, potentially located in chloroplasts, which belongs to the zinc-containing, intramembrane, site-2 protease (S2P) family. In cells, most of the S2P proteases are located within the chloroplasts, where they play an important role in the development of chloroplasts, maintaining proper stoichiometric relations between polypeptides building photosynthetic complexes and influencing the sensitivity of plants to photoinhibitory conditions. Among the known chloroplast S2P proteases, S2P2 protease is one of the least known. Its exact location within the chloroplast is not known, nor is anything known about its possible physiological functions. Therefore, we decided to investigate an intra-chloroplast localization and the possible physiological role of S2P2. To study the intra-chloroplast localization of S2P2, we used specific anti-S2P2 antibodies and highly purified chloroplast fractions containing envelope, stroma, and thylakoid proteins. To study the physiological role of the protease, we used two lines of insertion mutants lacking the S2P2 protease protein. Here, we present results demonstrating the thylakoid localization of S2P2. Moreover, we present experimental evidence indicating that the lack of S2P2 in chloroplasts leads to a significant decrease in the level of photosystem I and photosystem II core proteins: PsaB, PsbA, PsbD, and PsbC, as well as polypeptides building both the main light-harvesting antenna (LHC II), Lhcb1 and Lhcb2, as well as Lhcb4 and Lhcb5 polypeptides, constituting elements of the minor, peripheral antenna system. These changes are associated with a decrease in the number of PS II-LHC II supercomplexes. The consequence of these disorders is a greater sensitivity of mutants to photoinhibition. The obtained results clearly indicate that the S2P2 protease is another thylakoid protein that plays an important role in the proper functioning of chloroplasts, especially in high-light-intensity conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2024.1372318