Experimental study of the spray characteristics of twin-fluid atomization: Focusing on the annular flow regime
The characteristics of twin-fluid atomization operating in the annular flow regime were studied experimentally under various gas-to-liquid ratios (GLRs) and injection pressures. The macroscopic morphology of the spray was obtained by shadowgraph, while the droplet size and velocity were measured usi...
Saved in:
Published in | Physics of fluids (1994) Vol. 34; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The characteristics of twin-fluid atomization operating in the annular flow regime were studied experimentally under various gas-to-liquid ratios (GLRs) and injection pressures. The macroscopic morphology of the spray was obtained by shadowgraph, while the droplet size and velocity were measured using a phase-Doppler particle analyzer technique. It was found that the spray cone angle increases almost linearly with the GLR, and the axial distance required for droplet coalescence to outweigh the breakup decreases with increasing GLR. The Sauter mean diameter (SMD) first decreases and then increases along the axial direction due to the competition between turbulent breakup and droplet coalescence. The droplet size follows a lognormal distribution; the droplet velocity distribution is closer to a lognormal distribution under large GLRs, while it follows normal distribution with GLR = 3%. Regarding the radial distribution, low GLRs (3% and 5%) lead to a bimodal spatial velocity distribution, while for large GLRs, the droplet velocity decreases monotonically toward the far field. The spray tends to become more stable with increasing GLR and injection pressure
P
inj, whereas the SMD increases with increasing
P
inj. The underlying atomization mechanism in a twin-fluid injector in the annular flow state can be regarded as the disintegration of the initial liquid sheet by longitudinal Kelvin–Helmholtz instability followed by transverse Rayleigh–Taylor instability, which yields a direct proportionality of the droplet size to the initial liquid sheet thickness
Δ
L. Subsequently, for high
P
inj, the gas core shrinks and
Δ
L increases, which results in an increased SMD but enhanced atomization efficiency
Δ
L
/
SMD. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0128231 |