Autotaxin promotes the degradation of the mucus layer by inhibiting autophagy in mouse colitis

Autotaxin (ATX or ENPP2) is an autocrine enzyme associated with the metabolism of various phospholipids. ATX has recently been identified as a regulatory factor in immune-related and inflammation-associated diseases, such as inflammatory bowel disease, but the exact mechanism is unclear. Here, we tr...

Full description

Saved in:
Bibliographic Details
Published inMolecular immunology Vol. 160; pp. 44 - 54
Main Authors Chen, Xiaoyan, Zhang, Hui, Zhou, Xiaojiang, Wang, Yunwu, Shi, Wenjie
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Autotaxin (ATX or ENPP2) is an autocrine enzyme associated with the metabolism of various phospholipids. ATX has recently been identified as a regulatory factor in immune-related and inflammation-associated diseases, such as inflammatory bowel disease, but the exact mechanism is unclear. Here, we treated mice with recombinant ATX protein or an ATX inhibitor to investigate the effect of ATX on colitis in mice and the underlying mechanism. In a mouse model of colitis, ATX expression was increased, autophagy was impaired, and the mucus barrier was disrupted. Recombinant ATX protein promoted intestinal inflammation, inhibited autophagy, and disrupted the mucus barrier, while an ATX inhibitor had the opposite effect. Next, we treated mice that received ATX with an autophagy activator and an adenosine 5‘-monophosphate-activated protein kinase (AMPK) agonist. We observed that autophagy activator and AMPK agonist could repair the mucus barrier and alleviate intestinal inflammation in ATX-treated mice. In vitro, we obtained consistent results. Thus, we concluded that ATX could inhibit autophagy through the AMPK pathway, which consequently disordered the mucus barrier and aggravated intestinal inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-5890
1872-9142
DOI:10.1016/j.molimm.2023.06.002