Potential bioisosteres of β-uracilalanines derived from 1H-1,2,3-triazole-C-carboxylic acids
[Display omitted] The 1H-1,2,3-triazole-originated derivatives of willardiine were obtained by: (i) construction of the 1H-1,2,3-triazole ring in 1,3-dipolar cycloaddition of the uracil-derived azides and the carboxylate-bearing alkynes or α-acylphosphorus ylide, or (ii) N-alkylation of the uracil d...
Saved in:
Published in | Bioorganic chemistry Vol. 83; pp. 500 - 510 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
SAN DIEGO
Elsevier Inc
01.03.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
The 1H-1,2,3-triazole-originated derivatives of willardiine were obtained by: (i) construction of the 1H-1,2,3-triazole ring in 1,3-dipolar cycloaddition of the uracil-derived azides and the carboxylate-bearing alkynes or α-acylphosphorus ylide, or (ii) N-alkylation of the uracil derivative with the 1H-1,2,3-triazole-4-carboxylate-derived mesylate. The latter method offered: (i) reproducible results, (ii) a significant reduction of amounts of auxiliary materials, (iii) reduction in wastes and (iv) reduction in a number of manual operations required for obtaining the reaction product. Compound 6a exhibited significant binding affinity to hHS1S2I ligand-binding domain of GluR2 receptor (EC50 = 2.90 µM) and decreased viability of human astrocytoma MOG-G-CCM cells in higher extent than known AMPA antagonist GYKI 52466. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-2068 1090-2120 |
DOI: | 10.1016/j.bioorg.2018.10.061 |