Overexpression of miR-1290 contributes to cell proliferation and invasion of non small cell lung cancer by targeting interferon regulatory factor 2

MicroRNAs are small endogenous non-coding RNAs, which can frequently emerge as regulators in many cancer types. MiR-1290 was found to be abnormally elevated in non small cell lung cancer (NSCLC). However, the underlying molecular mechanism still needs to be investigated. Here, we demonstrated that m...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biochemistry & cell biology Vol. 95; pp. 113 - 120
Main Authors Jin, Jian-jun, Liu, Yuan-hua, Si, Ji-ming, Ni, Ran, Wang, Jing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:MicroRNAs are small endogenous non-coding RNAs, which can frequently emerge as regulators in many cancer types. MiR-1290 was found to be abnormally elevated in non small cell lung cancer (NSCLC). However, the underlying molecular mechanism still needs to be investigated. Here, we demonstrated that miR-1290 expression levels were remarkably upregulated in NSCLC tissues compared to adjacent normal tissues. Higher miR-1290 expression levels positively associated with lymph node metastasis and advanced tumor stage. Functional assays showed that upregulated miR-1290 expression in NSCLC cells enhanced cell proliferation, cell colony formation and invasion capacities in vitro. Furthermore, we found that miR-1290 promoted cell proliferation related protein CDK2 and CDK4 expression and enhanced Epithelial-Mesenchymal Transition (EMT) process by downregulating E-cadherin expression and upregulating N-cadherin expression. Bioinformatics analysis and luciferase reporter gene assays revealed that Interferon regulatory factor 2 (IRF2) was a direct target of miR-1290. Overexpression of miR-1290 can degrade IRF2 mRNA and downregulated IRF2 protein expression in NSCLC cells. Upregulated IRF2 could partly rescue the promoting effects induced by miR-1290 overexpression on cell proliferation and invasion of NSCLC. Additionally, we confirmed that reduced miR-1290 expression could suppress tumor growth using a tumor xenograft model in vivo. Thus, we concluded that miR-1290 may serve as a potential target of NSCLC treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1357-2725
1878-5875
DOI:10.1016/j.biocel.2017.12.017