Helix formation and stability in membranes

In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Biomembranes Vol. 1860; no. 10; pp. 2108 - 2117
Main Authors McKay, Matthew J., Afrose, Fahmida, Koeppe, Roger E., Greathouse, Denise V.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. [Display omitted] •General features of alpha-helical membrane protein folding are reviewed.•Helix fraying can provide interfacial stabilization and modulation of dynamics.•Membrane peptide topology may be pH-dependent.•Some peptides are able to passively cross lipid bilayers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
ISSN:0005-2736
1879-2642
DOI:10.1016/j.bbamem.2018.02.010