An event-triggered collaborative neurodynamic approach to distributed global optimization
In this paper, we propose an event-triggered collaborative neurodynamic approach to distributed global optimization in the presence of nonconvexity. We design a projection neural network group consisting of multiple projection neural networks coupled via a communication network. We prove the converg...
Saved in:
Published in | Neural networks Vol. 169; pp. 181 - 190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose an event-triggered collaborative neurodynamic approach to distributed global optimization in the presence of nonconvexity. We design a projection neural network group consisting of multiple projection neural networks coupled via a communication network. We prove the convergence of the projection neural network group to Karush–Kuhn–Tucker points of a given global optimization problem. To reduce communication bandwidth consumption, we adopt an event-triggered mechanism to liaise with other neural networks in the group with the Zeno behavior being precluded. We employ multiple projection neural network groups for scattered searches and re-initialize their states using a meta-heuristic rule in the collaborative neurodynamic optimization framework. In addition, we apply the collaborative neurodynamic approach for distributed optimal chiller loading in a heating, ventilation, and air conditioning system. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2023.10.022 |