Distinguishing characteristics of pediatric patients with primary hyperoxaluria type 1 in PEDSnet

Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inborn error of metabolism that causes oxalate deposition, leading to recurrent calcium oxalate kidney stones, chronic kidney disease and systemic oxalosis, which produces a broad range of serious life-threatening complications. Patients w...

Full description

Saved in:
Bibliographic Details
Published inJournal of pediatric urology Vol. 20; no. 1; pp. 88.e1 - 88.e9
Main Authors Tasian, Gregory E., Dickinson, Kimberley, Park, Grace, Marchesani, Nicole, Mittal, Akanksha, Cheng, Nathan, Ching, Christina B., Chu, David I., Walton, Ryan, Yonekawa, Karyn, Gluck, Caroline, Muneeruddin, Samina, Kan, Kathleen M., DeFoor, William, Rove, Kyle, Forrest, Christopher B.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inborn error of metabolism that causes oxalate deposition, leading to recurrent calcium oxalate kidney stones, chronic kidney disease and systemic oxalosis, which produces a broad range of serious life-threatening complications. Patients with PH1 have delayed diagnosis due to the rarity of the disease and the overlap with early-onset kidney stone disease not due to primary hyperoxaluria. The objective of this study was to determine the clinical features of individuals <21 years of age with PH1 that precede its diagnosis. We hypothesized that a parsimonious set of features could be identified that differentiate patients with PH1 from patients with non-primary hyperoxaluria-associated causes of early-onset kidney stone disease. We determined the association between clinical characteristics and PH1 diagnosis in a case–control study conducted between 2009 and 2021 in PEDSnet, a clinical research network of eight US pediatric health systems. Each patient with genetically confirmed PH1 was matched by sex and PEDSnet institution to up to 4 control patients with kidney stones without PH of any type. We obtained patient characteristics and diagnostic test results occurring before to less than 6 months after study entrance from a centralized database query and from manual chart review. Differences were examined using standardized differences and multivariable regression. The study sample included 37 patients with PH1 and 147 controls. Patients with PH1 were younger at diagnosis (median age of 3 vs 13.5 years); 75 % of children with PH1 were less than 8 years-old. Patients with PH1 were more likely to have combinations of nephrocalcinosis on ultrasound or CT (43 % vs 3 %), lower eGFR at diagnosis (median = 52 mL/min/1.73 m2 vs 114 mL/min/1.73 m2), and have normal mobility. Patients with PH1 had higher proportion of calcium oxalate monohydrate kidney stones than controls (median = 100 % vs 10 %). There were no differences in diagnosis of failure to thrive, stone size, or echocardiography results. Children with PH1 are characterized by presentation before adolescence, nephrocalcinosis, decreased eGFR at diagnosis, and calcium oxalate monohydrate stone composition. If externally validated, these characteristics could facilitate earlier diagnosis and treatment of children with PH1. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-5131
1873-4898
DOI:10.1016/j.jpurol.2023.10.001