Bisphenol-diglycidyl ethers in paired urine and serum samples from children and adolescents: Partitioning, clearance and exposure assessment

Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 306; p. 119351
Main Authors Yang, Runhui, Duan, Jiali, Li, Hong, Sun, Ying, Shao, Bing, Niu, Yumin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA), which may also adversely affect the growth and development of children and adolescents. Here, we investigated nine bisphenol-diglycidyl ethers (BDGEs) in 181 paired urine and serum samples from children and adolescents from Beijing to determine their partitioning, clearance and exposure levels. The results showed that nine BDGEs were detected in 181 urine and serum samples from children and adolescents from Beijing. Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H2O) was the primary pollutant. The daily intake of ∑BDGEs was 15.217 ng/kg bw/day among children and adolescents in Beijing. The ranking of BDGEs in terms of renal clearance rate (CLrenal) in this study population was BADGE > BADGE·2H2O > BFDGE > bisphenol F bis(3-chloro-2-hydroxypropyl) glycidyl ether (BFDGE·2HCl) > bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H2O). In addition, the serum and urine ratios (S/U ratios) of BFDGE·2HCl, BADGE·2H2O, BFDGE, BADGE, and BADGE·HCl·H2O were higher than 1, indicating that these contaminants have a higher enrichment capacity in human blood. To our knowledge, this is the first study on the partitioning and renal clearance rate of BDGEs in paired urine and serum samples from children and adolescents. [Display omitted] •BADGE·2H2O was the primary contaminant in the urine and serum of adolescents in Beijing.•The enzymolysis strategy can lead to significant overestimation of BADGE·2H2O exposure levels.•BADGE and BADGE·2H2O are the BDGEs with the highest renal clearance rate.•Most BDGEs have higher enrichment capacity in human serum than that in urine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2022.119351