Resource-efficient digital characterization and control of classical non-Gaussian noise
We show the usefulness of frame-based characterization and control [PRX Quantum 2, 030315 (2021)] for non-Markovian open quantum systems subject to classical non-Gaussian dephasing. By focusing on the paradigmatic case of random telegraph noise and working in a digital window frame, we demonstrate h...
Saved in:
Published in | Applied physics letters Vol. 122; no. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
12.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We show the usefulness of frame-based characterization and control [PRX Quantum 2, 030315 (2021)] for non-Markovian open quantum systems subject to classical non-Gaussian dephasing. By focusing on the paradigmatic case of random telegraph noise and working in a digital window frame, we demonstrate how to achieve higher-order control-adapted spectral estimation for the noise-optimized dynamical decoupling design. We find that, depending on the operating parameter regime, control that is optimized based on non-Gaussian noise spectroscopy can substantially outperform standard Walsh decoupling sequences as well as sequences that are optimized based solely on Gaussian noise spectroscopy. This approach is also intrinsically more resource-efficient than frequency-domain comb-based methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0153530 |