Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro
Extracorporeal photopheresis that exposes isolated white blood cells to 8-methoxypsoralen (8-MOP) and ultraviolet-A (UV-A) light is used for the management of cutaneous T-cell lymphoma and graft-versus-host disease. 8-MOP binds to DNA of both tumor and normal cells, thus increasing the risk of carci...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 9; pp. 2702 - 2708 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Extracorporeal photopheresis that exposes isolated white blood cells to 8-methoxypsoralen (8-MOP) and ultraviolet-A (UV-A) light is used for the management of cutaneous T-cell lymphoma and graft-versus-host disease. 8-MOP binds to DNA of both tumor and normal cells, thus increasing the risk of carcinogenesis of normal cells; and also kills both tumor and normal cells with no selectivity after UV-A irradiation. Hexaminolevulinate (HAL)-induced protoporphyrin-IX is a potent photosensitizer that localizes at membranous structures outside of the nucleus of a cell. HAL-mediated photodynamic therapy selectively destroys activated/transformed lymphocytes and induces systemic anti-tumor immunity. The aim of the present study was to explore the possibility of using HAL instead of 8-MOP to kill cells after UV-A exposure.
Human T-cell lymphoma Jurkat and Karpas 299 cell lines were used to evaluate cell photoinactivation after 8-MOP and/or HAL plus UV-A light with cell proliferation and long term survival assays. The mode of cell death was also analyzed by fluorescence microscopy.
Cell proliferation was decreased by HAL/UV-A, 8-MOP/UV-A or HAL/8-MOP/UV-A. At sufficient doses, the cells were killed by all the regimens; however, the mode of cell death was dependent on the treatment conditions. 8-MOP/UV-A produced apoptotic death exclusively; whereas both apoptosis and necrosis were induced by HAL/UV-A.
8-MOP can be replaced by HAL to inactivate the Jurkat and Karpas 299 T-cell lymphoma cells after UV-A irradiation via apoptosis and necrosis. This finding may have an impact on improved efficacy of photopheresis.
•8-MOP can be replaced by HAL to inactivate human T-cell lymphoma cells after UV-A.•8-MOP/UV-A induces only apoptosis; while HAL/UV-A causes apoptosis and necrosis.•This finding may have an impact on improved efficacy of photopheresis |
---|---|
ISSN: | 0304-4165 0006-3002 1872-8006 |
DOI: | 10.1016/j.bbagen.2014.05.020 |