Nuclear position and local acetyl-CoA production regulate chromatin state

Histone acetylation regulates gene expression, cell function and cell fate 1 . Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is c...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 630; no. 8016; pp. 466 - 474
Main Authors Willnow, Philipp, Teleman, Aurelio A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.06.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Histone acetylation regulates gene expression, cell function and cell fate 1 . Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid β-oxidation, which is also increased in the rim. Inhibition of fatty acid β-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression. Analyses of histone acetylation in Drosophila wing imaginal discs reveal distinct patterns of acetylation and cellular metabolism that affect gene expression and cell specification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-024-07471-4