A two-transistor bootstrap type selective device for spin-transfer-torque magnetic tunnel junctions
Two-transistor bootstrap type selective device for spin-transfer-torque magnetic tunnel junctions (STT-MTJs) is proposed that is smaller than the conventional ones with equivalent performance. The power supply voltage dependence of the area for the two-NFET bootstrap type selective device that can s...
Saved in:
Published in | Japanese Journal of Applied Physics Vol. 53; no. 4S; pp. 4 - 1-04ED03-6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Applied Physics
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Two-transistor bootstrap type selective device for spin-transfer-torque magnetic tunnel junctions (STT-MTJs) is proposed that is smaller than the conventional ones with equivalent performance. The power supply voltage dependence of the area for the two-NFET bootstrap type selective device that can switch MTJs within 10 ns is compared with those of the conventional single-NFET, single-PFET, and CMOS type selective devices with the same performance in 90 nm technology node. It is found that the two-NFET bootstrap type selective device can be smaller than the conventional ones especially for the power supply voltage equal to or lower than 0.9 V. The two-NFET bootstrap type selective device is shown to maintain scalability to 32 nm node just like the CMOS one, while the conventional single-NFET and single-PFET selective devices fail to be scaled properly. This selective device can be applied to every high-performance MOS/MTJ hybrid circuit for increasing the integration density. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.53.04ED03 |