Examining mechanisms of brain control of bladder function with resting state functional connectivity MRI

Aims This aim of this study is to identify the brain mechanisms involved in bladder control. Methods We used fMRI to identify brain regions that are activated during bladder filling. We then used resting state connectivity fMRI (rs‐fcMRI) to assess functional connectivity of regions identified by fM...

Full description

Saved in:
Bibliographic Details
Published inNeurourology and urodynamics Vol. 33; no. 5; pp. 493 - 501
Main Authors Nardos, Rahel, Gregory, William Thomas, Krisky, Christine, Newell, Amanda, Nardos, Binyam, Schlaggar, Bradley, Fair, Damien A.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aims This aim of this study is to identify the brain mechanisms involved in bladder control. Methods We used fMRI to identify brain regions that are activated during bladder filling. We then used resting state connectivity fMRI (rs‐fcMRI) to assess functional connectivity of regions identified by fMRI with the rest of the brain as the bladder is filled to capacity. Results Female participants (n = 20) were between ages 40 and 64 with no significant history of symptomatic urinary incontinence. Main effect of time (MET) fMRI analysis resulted in 20 regions of interest (ROIs) that have significant change in BOLD signal (z = 3.25, P <0.05) over the course of subtle bladder filling and emptying regardless of full versus empty bladder state. Bladder‐state by time (BST) fMRI analysis resulted in three ROIs that have significant change in BOLD signal (z = 3.25, P <0.05) over the course of bladder runs comparing full versus empty bladder state. Rs‐fcMRI fixed effects analysis identified significant changes in connectivity between full and empty bladder states in seven brain regions (z = 4.0) using the three BST ROIs and sixteen brain regions (z = 7) using the twenty MET ROIs. Regions identified include medial frontal gyrus, posterior cingulate (PCC), inferiolateral temporal and post‐central gyrus, amygdale, the caudate, inferior parietal lobe as well as anterior and middle cingulate gyrus. Conclusions There is significant and vast changes in the brain's functional connectivity when bladder is filled suggesting that the central process responsible for the increased control during the full bladder state appears to largely rely on the how distributed brain systems are functionally integrated. Neurourol. Urodynam. 33:493–501, 2014. © 2013 Wiley Periodicals, Inc.
Bibliography:Pfizer OAB-LUTS Competitive
Advanced Imaging Research Center at OHSU
istex:676AABCD993E31AA6A341D8CDBE00AFC48ECA19D
ArticleID:NAU22458
*
OHSU New Faculty Institutional Support
ark:/67375/WNG-FB4PB886-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0733-2467
1520-6777
DOI:10.1002/nau.22458