Validation of CM SAF CLARA-A2 and SARAH-E Surface Solar Radiation Datasets over China

To achieve high-quality surface solar radiation (SSR) data for climate monitoring and analysis, the two satellite-derived monthly SSR datasets of CM SAF CLARA-A2 and SARAH-E have been validated against a homogenized ground-based dataset covering 59 stations across China for 1993–2015 and 1999–2015,...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 10; no. 12; p. 1977
Main Authors Wang, Yawen, Trentmann, Jörg, Yuan, Wenping, Wild, Martin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To achieve high-quality surface solar radiation (SSR) data for climate monitoring and analysis, the two satellite-derived monthly SSR datasets of CM SAF CLARA-A2 and SARAH-E have been validated against a homogenized ground-based dataset covering 59 stations across China for 1993–2015 and 1999–2015, respectively. The satellite products overestimate surface solar irradiance by 10.0 W m−2 in CLARA-A2 and 7.5 W m−2 in SARAH-E on average. A strong urbanization effect has been noted behind the large positive bias in China. The bias decreased after 2004, possibly linked to a weakened attenuating effect of aerosols on radiation in China. Both satellite datasets can reproduce the monthly anomalies of SSR, indicated by a significant correlation around 0.8. Due to the neglection of temporal aerosol variability in the satellite algorithms, the discrepancy between the satellite-estimated and ground-observed SSR trends slightly increases in 1999–2015 as compared to 1993–2015. The seasonal performance of the satellite products shows a better accuracy during warm than cold seasons. With respect to the spatial performance, the effects from anthropogenic aerosols, dust aerosols and high elevation and snow-covered surfaces should be well considered in the satellite SSR retrievals to further improve the performance in the eastern, northwestern and southwestern parts of China, respectively.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10121977