Detection of Natural Gas Leakages Using a Laser-Based Methane Sensor and UAV

The safety of the gas transmission infrastructure is one of the main concerns for infrastructure operating companies. Common gas pipelines’ tightness control is tedious and time-consuming. The development of new methods is highly desirable. This paper focuses on the applications of air-borne methods...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 3; p. 510
Main Authors Iwaszenko, Sebastian, Kalisz, Piotr, Słota, Marcin, Rudzki, Andrzej
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The safety of the gas transmission infrastructure is one of the main concerns for infrastructure operating companies. Common gas pipelines’ tightness control is tedious and time-consuming. The development of new methods is highly desirable. This paper focuses on the applications of air-borne methods for inspections of the natural gas pipelines. The main goal of this study is to test an unmanned aerial vehicle (UAV), equipped with a remote sensing methane detector, for natural gas leak detection from the pipeline network. Many studies of the use of the UAV with laser detectors have been presented in the literature. These studies include experiments mainly on the artificial methane sources simulating gas leaks. This study concerns the experiments on a real leakage of natural gas from a pipeline. The vehicle at first monitored the artificial source of methane to determine conditions for further experiments. Then the experiments on the selected section of the natural gas pipelines were conducted. The measurement data, along with spatial coordinates, were collected and analyzed using machine learning methods. The analysis enabled the identification of groups of spatially correlated regions which have increased methane concentrations. Investigations on the flight altitude influence on the accuracy of measurements were also carried out. A range of between 4 m and 15 m was depicted as optimal for data collection in the natural gas pipeline inspections. However, the results from the field experiments showed that areas with increased methane concentrations are significantly more difficult to identify, though they are still noticeable. The experiments also indicate that the lower altitudes of the UAV flights should be chosen. The results showed that UAV monitoring can be used as a tool for the preliminary selection of potentially untight gas pipeline sections.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13030510