Electroadsorptive Removal of Gaseous Pollutants

Adsorption is a consequence of surface energy distribution, and the existence of electrostatic bonding suggests that the presence of an external electric field may affect adsorbate/adsorbent interactions. Nevertheless, this aspect has been poorly studied in the literature, except under non-thermal p...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 6; p. 1162
Main Authors Pierpaoli, Mattia, Fava, Gabriele, Ruello, Maria
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adsorption is a consequence of surface energy distribution, and the existence of electrostatic bonding suggests that the presence of an external electric field may affect adsorbate/adsorbent interactions. Nevertheless, this aspect has been poorly studied in the literature, except under non-thermal plasma or corona discharge conditions. After having demonstrated in our previous work that the adsorption kinetics of gaseous organic compounds can be enhanced by the presence of an external applied electric field, in this study, we focus on the influence of the electric field on adsorbent and adsorptive interactions. By using a commercially available activated carbon cloth, in addition to increasing the adsorbent mass transfer coefficient by virtue of the increasing intensity of the applied electric field, the results suggest that adsorbent morphology is only influenced by the formation of new surface functional groups. Moreover, enhanced adsorption kinetics and capacity may result from the electrohydrodynamic force induced by the movement of charged and neutral particles towards the adsorbent, as confirmed by the reversibility of the process. Such enhancement results in a negligible increase, of about 3%, in adsorption capacity (i.e., from 91 mmol m−2 Pa−1 for only adsorption to 94 mmol m−2 Pa−1 in the presence of the applied electric field), but also in a dramatic doubling of adsorption kinetics (i.e., from 0.09 min−1 for only adsorption to 0.19 min−1 in the presence of the applied electric field). In reality, the application of an electric field to an activated carbon cloth leads to faster adsorption kinetics, without substantially altering its adsorption capacity.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9061162