Thermodynamic Analysis of Advanced Gas Turbine Combined Cycle Integration with a High-Temperature Nuclear Reactor and Cogeneration Unit
The EU has implemented targets to achieve a 20% share of energy from renewable sources by 2020, and 32% by 2030. Additionally, in the EU countries by 2050, more than 80% of electrical energy should be generated using non-greenhouse gases emission technology. At the same time, energy cost remains a c...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 2; p. 400 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The EU has implemented targets to achieve a 20% share of energy from renewable sources by 2020, and 32% by 2030. Additionally, in the EU countries by 2050, more than 80% of electrical energy should be generated using non-greenhouse gases emission technology. At the same time, energy cost remains a crucial economic issue. From a practical point of view, the most effective technology for energy conversion is based on a gas turbine combined cycle. This technology uses natural gas, crude oil or coal gasification product but in any case, generates a significant amount of toxic gases to the atmosphere. In this study, the environmentally friendly power generation system composed of a high-temperature nuclear reactor HTR integrated with gas turbine combined cycle technology and cogeneration unit is thermodynamically analysed. The proposed solution is one of the most efficient ways for energy conversion, and what is also important it can be easily integrated with HTR. The results of analysis show that it is possible to obtain for analysed cycles thermal efficiency higher than 50% which is not only much more than could be proposed by typical lignite or hard coal power plant but is also more than can be offered by nuclear technology. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13020400 |