Experimental and Numerical Study of Engineered Cementitious Composite with Strain Recovery under Impact Loading
An engineered cementitious composite, endowed with strain recovery and incorporating hybrid shape memory alloy (SMA) and polyvinyl alcohol (PVA) short fibers, was subjected to drop weight impact loading. Numerical simulation of the composite’s impact behavior was performed, and the model predictions...
Saved in:
Published in | Applied sciences Vol. 9; no. 5; p. 994 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An engineered cementitious composite, endowed with strain recovery and incorporating hybrid shape memory alloy (SMA) and polyvinyl alcohol (PVA) short fibers, was subjected to drop weight impact loading. Numerical simulation of the composite’s impact behavior was performed, and the model predictions agreed well with the experimental findings. Numerical and experimental investigations demonstrated that incorporating SMA fibers in the composite yielded superior impact resistance compared to that of control mono-PVA specimens. Heat treatment stimulated the SMA fibers to apply local prestress on the composite’s matrix owing to the shape memory effect, thus enhancing energy absorption capacity, despite the damage incurred by PVA fibers during the heating process. The superior impact performance of the hybrid composite makes it a strong contender for the construction of protective structures, with a potential to enhance the safety of critical infrastructure assets against impact and blast loading. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9050994 |