Differential responses of expiratory muscles to chemical stimuli in awake dogs

We assessed respiratory muscle response patterns to chemoreceptor stimuli (hypercapnia, hypoxia, normocapnic hypoxia, almitrine, and almitrine + CO2) in six awake dogs. Mean electromyogram (EMG) activities were measured in the crural (CR) diaphragm, triangularis sterni (TS), and transversus abdomini...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 66; no. 1; p. 384
Main Authors Smith, C A, Ainsworth, D M, Henderson, K S, Dempsey, J A
Format Journal Article
LanguageEnglish
Published United States 01.01.1989
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:We assessed respiratory muscle response patterns to chemoreceptor stimuli (hypercapnia, hypoxia, normocapnic hypoxia, almitrine, and almitrine + CO2) in six awake dogs. Mean electromyogram (EMG) activities were measured in the crural (CR) diaphragm, triangularis sterni (TS), and transversus abdominis (TA). Hypercapnia and normocapnic hypoxia caused mild to marked hyperpnea [2-5 times control inspiratory flow (VI)] and increased activity in CR diaphragm, TS, and TA. When hypocapnia was permitted to develop during hypoxia and almitrine-induced moderate hyperpnea, CR diaphragm activity increased, whereas TS and TA activities usually did not change or were reduced below control. Over time in hypercapnia, CR diaphragm, TS, and TA were augmented and maintained at these levels over many minutes; with hypoxic hyperventilation CR diaphragm, TS, and TA were first augmented but then CR diaphragm remained augmented while TS and, less consistently, TA were inhibited over time. Marked hyperpnea (4-5 times control) due to carotid body stimulation increased TA and TS EMG activity despite an accompanying hypocapnia. We conclude that in the intact awake dog 1) carotid body stimulation augments the activity of both inspiratory and expiratory muscles; 2) hypocapnia overrides the augmenting effect of carotid body stimulation on expiratory muscles during moderate hyperpnea, usually resulting in either no change or inhibition; 3) at higher levels of hyperpnea both chemoreceptor stimulation and stimulatory effects secondary to a high ventilatory output favor expiratory muscle activation; these effects override any inhibitory effects of a coincident hypocapnia; and 4) expiratory muscles of the rib cage/abdomen may be augmented/inhibited independently of one another.
ISSN:8750-7587
DOI:10.1152/jappl.1989.66.1.384