Healable, Flexible Supercapacitors Based on Shape Memory Polymers

Supercapacitors as novel and efficient energy storage devices could provide a higher power density and energy density compared to other electronics and devices. However, traditional supercapacitors are readily damaged, which leads to degraded performance or even failure. To make them more durable an...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 8; no. 10; p. 1732
Main Authors Zhou, Huankai, Luo, Hongsheng, Zhou, Xingdong, Wang, Huaquan, Yao, Yangrong, Lin, Wenjing, Yi, Guobin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Supercapacitors as novel and efficient energy storage devices could provide a higher power density and energy density compared to other electronics and devices. However, traditional supercapacitors are readily damaged, which leads to degraded performance or even failure. To make them more durable and efficient, healable flexible shape memory-based supercapacitors were unprecedentedly explored by a transfer process, in which the conductive nano-carbon networks were decorated with pseudocapacitance materials, followed by embedding them into a shape memory polymer matrix containing healing reagents. The composite exhibited flexibility, supercapacitance and self-healing capability originating from the shape memory effect and healing reagent. The morphologies, thermal, mechanical and capacitive properties, and the self-healability of the composite were investigated. In particular, the influence of the compositions on the healing efficiency was considered. The optimized composite exhibited good capacitance (27.33 mF cm−1), stability (only 4.08% capacitance loss after 1500 cycles) and healable property (up to 93% of the healing efficiency). The findings demonstrated how to endow the flexible polymeric electronics with healable bio-mimetic properties and may greatly benefit the application of intelligent polymers in the field of multi-functional electrical materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app8101732