Activation of the nuclear factor κB pathway by astrocyte elevated gene-1 : Implications for tumor progression and metastasis
Abstract Astrocyte elevated gene-1 (AEG-1) was initially identified as an HIV-1- and tumor necrosis factor α (TNF-α)–inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization approach. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblas...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 66; no. 3; pp. 1509 - 1516 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.02.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Astrocyte elevated gene-1 (AEG-1) was initially identified as an HIV-1- and tumor necrosis factor α (TNF-α)–inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization approach. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells and AEG-1 cooperates with Ha-ras to promote transformation of immortalized melanocytes. Activation of the transcription factor nuclear factor κB (NF-κB), a TNF-α downstream signaling component, is associated with several human illnesses, including cancer, and NF-κB controls the expression of multiple genes involved in tumor progression and metastasis. We now document that AEG-1 is a significant positive regulator of NF-κB. Enhanced expression of AEG-1 via a replication-incompetent adenovirus (Ad.AEG-1) in HeLa cells markedly increased binding of the transcriptional activator p50/p65 complex of NF-κB. The NF-κB activation induced by AEG-1 corresponded with degradation of IκBα and nuclear translocation of p65 that resulted in the induction of NF-κB downstream genes. Infection with an adenovirus expressing the mt32IκBα superrepressor (Ad.IκBα-mt32), which prevents p65 nuclear translocation, inhibited AEG-1-induced enhanced agar cloning efficiency and increased matrigel invasion of HeLa cells. We also document that TNF-α treatment resulted in nuclear translocation of both AEG-1 and p65 wherein these two proteins physically interacted, suggesting a potential mechanism by which AEG-1 could activate NF-κB. Our findings suggest that activation of NF-κB by AEG-1 could represent a key molecular mechanism by which AEG-1 promotes anchorage-independent growth and invasion, two central features of the neoplastic phenotype. (Cancer Res 2006; 66(3): 1509-16) |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-05-3029 |