Micromechanical Analysis for Two-Phase Copper-Silver Composites under Large Deformations
This study presents a homogenization based on micromechanics approach for a two-phase copper (Cu)-silver (Ag) composite undergoing finite deformations. In this approach, the high-fidelity generalized method of cells (HFGMC) is implemented for the prediction of the effective behavior of two cold-draw...
Saved in:
Published in | Journal of composites science Vol. 2; no. 1; p. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study presents a homogenization based on micromechanics approach for a two-phase copper (Cu)-silver (Ag) composite undergoing finite deformations. In this approach, the high-fidelity generalized method of cells (HFGMC) is implemented for the prediction of the effective behavior of two cold-drawn Cu-Ag composites with different drawing strains and to obtain the field (deformation gradient and stress) distributions in the composite. Both metals (Cu or Ag) are rate-dependent crystal plasticity material constituents. HFGMC is applied for studying the deformation behavior of two-phase Cu-Ag composites under uniaxial compression. The micromechanical approach has been verified by comparison with experimental and finite element simulation results. Results in terms of deformation behavior and field distributions are given for two different cold-drawn composites. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs2010001 |