Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts

A method was developed for culturing protoplasts freshly isolated from developing soybean (Glycine max L.) cotyledons. First cell divisions were observed within 5 days after protoplast isolation and microcalli, consisting of about 20 cells, were formed within 10 days. Thirty days after protoplast is...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 84; no. 3; pp. 856 - 861
Main Authors Lin, W, Odell, J.T, Schreiner, R.M
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Physiologists 01.07.1987
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A method was developed for culturing protoplasts freshly isolated from developing soybean (Glycine max L.) cotyledons. First cell divisions were observed within 5 days after protoplast isolation and microcalli, consisting of about 20 cells, were formed within 10 days. Thirty days after protoplast isolation, callus tissues were observed without the aid of a microscope. A 30 to 50% plating efficiency was consistently obtained. Using a polyethylene glycol-electroporation technique, DNA was introduced into these protoplasts. The protoplasts were then cultured to form callus. Chloramphenicol acetyltransferase (CAT) activity was detected in protoplast cultures 6 hours after introduction of a 35S-CAT-nopaline synthase 3′ chimeric gene. The highest CAT activity was detected in 3-day-old electroporated protoplast cultures, indicating transient expression of the introduced gene. Some CAT activity was detected in 40-day-old callus cultures and in geneticin (G418) selected callus tissues which also received a chimeric neomycin phosphotransferase II gene, indicating the presence of stable transformants. A control chimeric gene with an inverted 35S promoter failed to produce any CAT activity in this system.
Bibliography:F60
F30
881958688
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.84.3.856