Peroxyl radicals promoted changes in water permeability through gramicidin channels in DPPC and lecithin-PC vesicles

Gramicidin incorporation to DPPC or lecithin-PC large unilamellar vesicles (LUVs) leads to pore formation that, under hyper-osmotic conditions, produces a noticeable increase in the rate of trans-membrane water flow. This pore formation is more efficient in the more fluid lecithin-PC LUVs. Exposure...

Full description

Saved in:
Bibliographic Details
Published inChemistry and physics of lipids Vol. 123; no. 1; pp. 77 - 86
Main Authors Soto, M.A, Sotomayor, C.P, Lissi, E.A
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gramicidin incorporation to DPPC or lecithin-PC large unilamellar vesicles (LUVs) leads to pore formation that, under hyper-osmotic conditions, produces a noticeable increase in the rate of trans-membrane water flow. This pore formation is more efficient in the more fluid lecithin-PC LUVs. Exposure of these vesicles to peroxyl radicals generated in the aerobic thermolysis of 2,2′-azo-bis(2-amidinopropane) (AAPH), changes the physical properties of the bilayer (as sensed employing fluorescent probes), modifies gramicidin molecules (as sensed by the decrease in Trp fluorescence) and notably reduces the transbilayer rate of water outflow. In order to evaluate if this reduced water-transport capacity is due to changes in the membrane due to lipid-peroxidation and/or direct damage to gramicidin channels, results obtained in the oxidable vesicles (lecithin-PC) were compared to those obtained in DPPC vesicles. The data obtained show that most of the water transport efficiency loss can be ascribed to a direct disruption of gramicidin channels by AAPH derived peroxyl radicals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-3084
1873-2941
DOI:10.1016/S0009-3084(02)00163-9