Estimating Depth From Monocular Images as Classification Using Deep Fully Convolutional Residual Networks
Depth estimation from single monocular images is a key component in scene understanding. Most existing algorithms formulate depth estimation as a regression problem due to the continuous property of depths. However, the depth value of input data can hardly be regressed exactly to the ground-truth va...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 28; no. 11; pp. 3174 - 3182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Depth estimation from single monocular images is a key component in scene understanding. Most existing algorithms formulate depth estimation as a regression problem due to the continuous property of depths. However, the depth value of input data can hardly be regressed exactly to the ground-truth value. In this paper, we propose to formulate depth estimation as a pixelwise classification task. Specifically, we first discretize the continuous ground-truth depths into several bins and label the bins according to their depth ranges. Then, we solve the depth estimation problem as classification by training a fully convolutional deep residual network. Compared with estimating the exact depth of a single point, it is easier to estimate its depth range. More importantly, by performing depth classification instead of regression, we can easily obtain the confidence of a depth prediction in the form of probability distribution. With this confidence, we can apply an information gain loss to make use of the predictions that are close to ground-truth during training, as well as fully-connected conditional random fields for post-processing to further improve the performance. We test our proposed method on both indoor and outdoor benchmark RGB-Depth datasets and achieve state-of-the-art performance. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2017.2740321 |