A Deep Learning-Based Approach for Extraction of Positioning Feature Points in Lifting Holes

Due to uncontrollable influences of the manufacturing process and different construction environments, there are significant challenges to extracting accurate positioning points for the lifting holes in prefabricated beams. In this study, we propose a two-stage feature detection, which comprises the...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 17; p. 9915
Main Authors Qian, Jiahui, Xia, Wenjun, Zhao, Zhangyan, Qiu, Faju
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to uncontrollable influences of the manufacturing process and different construction environments, there are significant challenges to extracting accurate positioning points for the lifting holes in prefabricated beams. In this study, we propose a two-stage feature detection, which comprises the ADD (multi-Attention DASPP DeeplabV3+) model and the VLFGM (Voting mechanism line fitting based on Gaussian mixture model) method. Initially, the YoloV5s model is employed for image coarse localization to reduce the impacts of background noise, and the ADD model follows to segment the target region. Then, the multi-step ECA mechanism is introduced to the ADD. It can mitigate the loss of interest features in the pooling layer of the backbone as well as retain the details of the original features; DASPP is adopted to fuse features at different scales to enhance the correlation of features among channels. Finally, VLFGM is utilized to reduce the dependency of accuracy on segmentation results. The experimental results demonstrate that the proposed model achieves a mean intersection over union (mIoU) of 95.07%, with a 3.48% improvement and a mean pixel accuracy (mPA) of 99.16% on the validation set. The improved method reduces vertexes error by 30.00% (to 5.39 pixels) and centroid error by 28.93% (to 1.72 pixels), which exhibits superior stability and accuracy. This paper provides a reliable solution for visual positioning of prefabricated beams in complex environments.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13179915