Dynamic Flow Migration for Embedded Services in SDN/NFV-Enabled 5G Core Networks
Software defined networking (SDN) and network function virtualization (NFV) are key enabling technologies in fifth generation (5G) communication networks for embedding service-level customized network slices in a network infrastructure, based on statistical resource demands to satisfy long-term qual...
Saved in:
Published in | IEEE transactions on communications Vol. 68; no. 4; pp. 2394 - 2408 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Software defined networking (SDN) and network function virtualization (NFV) are key enabling technologies in fifth generation (5G) communication networks for embedding service-level customized network slices in a network infrastructure, based on statistical resource demands to satisfy long-term quality of service (QoS) requirements. However, traffic loads in different slices are subject to changes over time, resulting in challenges for consistent QoS provisioning. In this paper, a dynamic flow migration problem for embedded services is studied, to meet end-to-end (E2E) delay requirements with time-varying traffic. A multi-objective mixed integer optimization problem is formulated, addressing the trade-off between load balancing and reconfiguration overhead. The problem is transformed to a tractable mixed integer quadratically constrained programming (MIQCP) problem. It is proved that there is no optimality gap between the two problems; hence, we can obtain the optimum of the original problem by solving the MIQCP problem with some post-processing. To reduce time complexity, a heuristic algorithm based on redistribution of hop delay bounds is proposed to find an efficient solution. Numerical results are presented to demonstrate the aforementioned trade-off, the benefit from flow migration in terms of E2E delay guarantee, as well as the effectiveness and efficiency of the heuristic solution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2020.2968907 |