Detection and Coding Schemes for Sneak-Path Interference in Resistive Memory Arrays

Resistive memory is a promising technology for achieving unprecedented storage densities and new in-memory computing features. However, to fulfill their promise, resistive memories require array architectures suffering from a severe interference effect called "sneak paths." In this paper,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 67; no. 6; pp. 3821 - 3833
Main Authors Ben-Hur, Yuval, Cassuto, Yuval
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Resistive memory is a promising technology for achieving unprecedented storage densities and new in-memory computing features. However, to fulfill their promise, resistive memories require array architectures suffering from a severe interference effect called "sneak paths." In this paper, we address the sneak-path problem through a communication-theory framework. Starting from the fundamental problem of readout with parallel-resistance interference, we develop several tools for detection and coding that significantly improve memory reliability. For the detection problem, we formulate and derive the optimal detector for a realistic array model, and then propose simplifications that enjoy similarly good performance and simpler implementation. Complementing detection for better error rates is done by a new coding scheme that shapes the stored bits to get lower sneak-path incidence. For the same storage rates, the new coding scheme exhibits error rates lower by an order of magnitude compared to known shaping techniques.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2019.2897762