Analysis of Forward Model, Data Type, and Prior Information in Probabilistic Inversion of Crosshole GPR Data

The crosshole ground penetrating radar (GPR) is a widely used tool to map subsurface properties, and inversion methods are used to derive electrical parameters from crosshole GPR data. In this paper, a probabilistic inversion algorithm that uses Markov chain Monte Carlo (MCMC) simulations within the...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 2; p. 215
Main Authors Qin, Hui, Wang, Zhengzheng, Tang, Yu, Geng, Tiesuo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The crosshole ground penetrating radar (GPR) is a widely used tool to map subsurface properties, and inversion methods are used to derive electrical parameters from crosshole GPR data. In this paper, a probabilistic inversion algorithm that uses Markov chain Monte Carlo (MCMC) simulations within the Bayesian framework is implemented to infer the posterior distribution of the relative permittivity of the subsurface medium. Close attention is paid to the critical elements of this method, including the forward model, data type and prior information, and their influence on the inversion results are investigated. First, a uniform prior distribution is used to reflect the lack of prior knowledge of model parameters, and inversions are performed using the straight-ray model with first-arrival traveltime data, the finite-difference time-domain (FDTD) model with first-arrival traveltime data, and the FDTD model with waveform data, respectively. The cases using first-arrival traveltime data require an unreasonable number of model evaluations to converge, yet are not able to recover the real relative permittivity field. In contrast, the inversion using the FDTD model with waveform data successfully infers the correct model parameters. Then, the smooth constraint of model parameters is employed as the prior distribution. The inversion results demonstrate that the prior information barely affects the inversion results using the FDTD model with waveform data, but significantly improves the inversion results using first-arrival traveltime data by decreasing the computing time and reducing uncertainties of the posterior distribution of model parameters.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13020215