Spatiotemporal Reconstruction of MODIS Normalized Difference Snow Index Products Using U-Net with Partial Convolutions
Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product is one of the prevailing datasets for global snow monitoring, but cloud obscuration leads to the discontinuity of ground coverage information in spatial and temporal. To solve this problem, a novel spatial-temporal missing info...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 8; p. 1795 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product is one of the prevailing datasets for global snow monitoring, but cloud obscuration leads to the discontinuity of ground coverage information in spatial and temporal. To solve this problem, a novel spatial-temporal missing information reconstruction model based on U-Net with partial convolutions (PU-Net) is proposed to recover the cloud gaps in the MODIS Normalized Difference Snow Index (NDSI) products. Taking the Yellow River Source Region as a study case, in which the snow cover is characterized by shallow, fast-changing and complex heterogeneity, the MODIS NDSI product in the 2018–2019 snow season is reconstructed, and the reconstruction accuracy is validated with simulated cloud mask and in situ snow depth (SD) observations. The results show that under the simulated cloud mask scenario, the mean absolute error (MAE) of the reconstructed missing pixels is from 4.22% to 18.81% under different scenarios of the mean NDSI of the patch and the mask ratio of the applied mask, and the coefficient of determination (R2) ranges from 0.76 to 0.94. The validation based on in situ SD observations at 10 sites shows good consistency, the overall accuracy is increased by 25.66% to 49.25% compared with the Aqua-Terra combined MODIS NDSI product, and its value exceeds 90% at 60% of observation stations. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14081795 |