Enhancing SPARQL Query Generation for Knowledge Base Question Answering Systems by Learning to Correct Triplets

Generating SPARQL queries from natural language questions is challenging in Knowledge Base Question Answering (KBQA) systems. The current state-of-the-art models heavily rely on fine-tuning pretrained models such as T5. However, these methods still encounter critical issues such as triple-flip error...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 4; p. 1521
Main Authors Qi, Jiexing, Su, Chang, Guo, Zhixin, Wu, Lyuwen, Shen, Zanwei, Fu, Luoyi, Wang, Xinbing, Zhou, Chenghu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14041521

Cover

More Information
Summary:Generating SPARQL queries from natural language questions is challenging in Knowledge Base Question Answering (KBQA) systems. The current state-of-the-art models heavily rely on fine-tuning pretrained models such as T5. However, these methods still encounter critical issues such as triple-flip errors (e.g., (subject, relation, object) is predicted as (object, relation, subject)). To address this limitation, we introduce TSET (Triplet Structure Enhanced T5), a model with a novel pretraining stage positioned between the initial T5 pretraining and the fine-tuning for the Text-to-SPARQL task. In this intermediary stage, we introduce a new objective called Triplet Structure Correction (TSC) to train the model on a SPARQL corpus derived from Wikidata. This objective aims to deepen the model’s understanding of the order of triplets. After this specialized pretraining, the model undergoes fine-tuning for SPARQL query generation, augmenting its query-generation capabilities. We also propose a method named “semantic transformation” to fortify the model’s grasp of SPARQL syntax and semantics without compromising the pre-trained weights of T5. Experimental results demonstrate that our proposed TSET outperforms existing methods on three well-established KBQA datasets: LC-QuAD 2.0, QALD-9 plus, and QALD-10, establishing a new state-of-the-art performance (95.0% F1 and 93.1% QM on LC-QuAD 2.0, 75.85% F1 and 61.76% QM on QALD-9 plus, 51.37% F1 and 40.05% QM on QALD-10).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app14041521