Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction
This paper provides a comprehensive description of the new approach to biomass torrefaction under high-pressure conditions. A new type of laboratory-scale high-pressure reactor was designed and built. The aim of the study was to compare the high-pressure torrefaction with conventional near atmospher...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 18; p. 4790 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper provides a comprehensive description of the new approach to biomass torrefaction under high-pressure conditions. A new type of laboratory-scale high-pressure reactor was designed and built. The aim of the study was to compare the high-pressure torrefaction with conventional near atmospheric pressure torrefaction. Specifically, we investigated the torrefaction process influence on the fuel properties of wooden-pellet for two different pressure regimes up to 15 bar. All torrefaction processes were conducted at 300 °C, at 30 min of residence time. The initial analysis of the increased pressure impact on the torrefaction parameters: mass yields, energy densification ratio, energy yield, process energy consumption, the proximate analysis, high heating value, and energy needed to grind torrefied pellets was completed. The results show that high-pressure torrefaction needed up to six percent less energy, whereas energy densification in the pellet was ~12% higher compared to conventional torrefaction. The presence of pressure during torrefaction did not have an impact on the energy required for pellet grinding (p < 0.05). |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13184790 |