Optimal Sizing and Control Strategies for Hybrid Storage System as Limited by Grid Frequency Deviations
Frequency deviations of power systems caused by grid-connected wind power fluctuations is one of the key factors which restrains the increase of wind penetration level. This paper examines a combined wind and hybrid energy storage system (HESS, supercapacitor, and battery) to smooth wind power fluct...
Saved in:
Published in | IEEE transactions on power systems Vol. 33; no. 5; pp. 5486 - 5495 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Frequency deviations of power systems caused by grid-connected wind power fluctuations is one of the key factors which restrains the increase of wind penetration level. This paper examines a combined wind and hybrid energy storage system (HESS, supercapacitor, and battery) to smooth wind power fluctuations. A fuzzy-based wind-HESS system (FWHS) controller is proposed to suppress the wind power fluctuations. The proposed controller takes full advantage of the complimentary characteristics of the supercapacitor and battery with the supercapacitor and battery in charge of high and middle frequency components of wind fluctuations, respectively. A differential evolution (DE)-based optimal sizing method for HESS systems is introduced to evaluate the minimum capacity of HESS as being limited by grid frequency deviation. The efficiency of the proposed scheme in the paper for wind-HESS system is evaluated by a real Chinese power system. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2018.2805380 |