Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh–Bénard systems

Secondary and oscillatory instabilities in thermal gravitational convection have been the focus of intensive studies over recent years due to their relevance in materials science, and in particular, in the field of crystal growth from the melt. The purpose of the present discussion is to provide a c...

Full description

Saved in:
Bibliographic Details
Published inComptes rendus. Mecanique Vol. 335; no. 5; pp. 253 - 260
Main Author Lappa, Marcello
Format Journal Article
LanguageEnglish
Published Paris Elsevier SAS 01.05.2007
Elsevier
Subjects
Online AccessGet full text
ISSN1631-0721
1873-7234
1873-7234
DOI10.1016/j.crme.2007.05.003

Cover

Loading…
More Information
Summary:Secondary and oscillatory instabilities in thermal gravitational convection have been the focus of intensive studies over recent years due to their relevance in materials science, and in particular, in the field of crystal growth from the melt. The purpose of the present discussion is to provide a comparative and critical review of the subject through examination of existing studies and very recent contributions. It complements earlier reviews (Lappa, 2005) that were limited to the survey of steady three-dimensional symmetry breaking effects and/or the primary bifurcation of the flow. To cite this article: M. Lappa, C. R. Mecanique 335 (2007). Les instabilités secondaires et oscillatoires pour la convection gravitationnelle thermique ont fait l'objet d'études intensives durant les dernières années du fait de leur pertinence en science des matériaux, et plus particulièrement dans le domaine de la croissance cristalline. Le but de la présente discussion est de fournir une revue comparative et critique du sujet par l'examen des études existantes et de contributions très récentes. Il complète les précédentes revues (Lappa, 2005) qui ont été restreintes à la brisure de symétrie tridimensionnelle dans le cas stationnaire et/ou à la première bifurcation de l'écoulement. Pour citer cet article : M. Lappa, C. R. Mecanique 335 (2007).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1631-0721
1873-7234
1873-7234
DOI:10.1016/j.crme.2007.05.003