Online Estimation of Open Circuit Voltage Based on Extended Kalman Filter with Self-Evaluation Criterion
Open circuit voltage (OCV) is crucial for battery degradation analysis. However, high-precision OCV is usually obtained offline. To this end, this paper proposes a novel self-evaluation criterion based on the capacity difference of State of Charge (SoC) unit interval. The criterion is integrated int...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 12; p. 4373 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Open circuit voltage (OCV) is crucial for battery degradation analysis. However, high-precision OCV is usually obtained offline. To this end, this paper proposes a novel self-evaluation criterion based on the capacity difference of State of Charge (SoC) unit interval. The criterion is integrated into extended Kalman filter (EKF) for joint estimations of OCV and SoC. The proposed method is evaluated in a typical application scenario, energy storage system (ESS), using a LiFePO4 (LFP) battery. Extensive experimental results show that a more accurate OCV and incremental capacity and differential voltage (IC-DV) can be achieved online with the proposed method. Our method also greatly improves the accuracy of SoC estimation at each SoC point where the maximum estimation error of SoC is less than 0.3%. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15124373 |