Comparative, reusability and regeneration study of potassium oxide-based catalyst in deoxygenation reaction of WCO
In this work, the comparative study on the performance of K2O/SiO2 and calcined dolomite catalysts was conducted via deoxygenation of waste cooking oil (WCO). KSi catalyst has the potential as a deoxygenation catalyst due to mesoporous structure catalyst with high base properties which enhance oxyge...
Saved in:
Published in | Energy conversion and management. X Vol. 13; p. 100173 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, the comparative study on the performance of K2O/SiO2 and calcined dolomite catalysts was conducted via deoxygenation of waste cooking oil (WCO). KSi catalyst has the potential as a deoxygenation catalyst due to mesoporous structure catalyst with high base properties which enhance oxygen removal. The result found that K2O/SiO2 catalyst could be used in the deoxygenation of WCO generating a high yield of pyrolysis oil as compared to thermal deoxygenation and calcined dolomite catalyst. Besides that, the reusability and regeneration of the K2O/SiO2 catalyst were evaluated in the deoxygenation reaction using WCO as a feedstock. Five consecutive runs of reusability test and three successive cycles with two regenerations were performed. The reusability and followed by regeneration tests were conducted at conditions: 30 min of reaction time, 390 ± 5 °C reaction temperature and 150 cm3/min of N2 flow rate. The liquid products obtained from each cycle were analyzed by GC–MS. The deoxygenation of WCO using K2O/SiO2 catalyst rendered higher selectivity towards diesel products (C13-C24). The K2O/SiO2 catalyst presented a good performance in reusability and regenerability test with only ∼19.3–22.4% dropped in pyrolysis oil yield after 5 consecutive runs and only ∼11.20–13.23% drop in diesel yield after regeneration. The results showed that K2O/SiO2 catalyst has tremendous stability in the deoxygenation of WCO into green diesel and could be the alternative deoxygenation base catalyst for the deoxygenation process. |
---|---|
ISSN: | 2590-1745 2590-1745 |
DOI: | 10.1016/j.ecmx.2021.100173 |