Taming the Latency in Multi-User VR 360°: A QoE-Aware Deep Learning-Aided Multicast Framework
Immersive virtual reality (VR) applications require ultra-high data rate and low-latency for smooth operation. Hence in this paper, aiming to improve VR experience in multi-user VR wireless video streaming, a deep-learning aided scheme for maximizing the quality of the delivered video chunks with lo...
Saved in:
Published in | IEEE transactions on communications Vol. 68; no. 4; pp. 2491 - 2508 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Immersive virtual reality (VR) applications require ultra-high data rate and low-latency for smooth operation. Hence in this paper, aiming to improve VR experience in multi-user VR wireless video streaming, a deep-learning aided scheme for maximizing the quality of the delivered video chunks with low-latency is proposed. Therein the correlations in the predicted field of view (FoV) and locations of viewers watching 360° HD VR videos are capitalized on to realize a proactive FoV-centric millimeter wave (mmWave) physical-layer multicast transmission. The problem is cast as a frame quality maximization problem subject to tight latency constraints and network stability. The problem is then decoupled into an HD frame request admission and scheduling subproblems and a matching theory game is formulated to solve the scheduling subproblem by associating requests from clusters of users to mmWave small cell base stations (SBSs) for their unicast/multicast transmission. Furthermore, for realistic modeling and simulation purposes, a real VR head-tracking dataset and a deep recurrent neural network (DRNN) based on gated recurrent units (GRUs) are leveraged. Extensive simulation results show how the content-reuse for clusters of users with highly overlapping FoVs brought in by multicasting reduces the VR frame delay in 12%. This reduction is further boosted by proactiveness that cuts by half the average delays of both reactive unicast and multicast baselines while preserving HD delivery rates above 98%. Finally, enforcing tight latency bounds shortens the delay-tail as evinced by 13% lower delays in the 99th percentile. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2020.2965527 |