Regulatory role of excitatory interneurons by combining electrical stimulation for absence seizures in the coupled thalamocortical model

The role of excitatory interneurons (EINs) in the cortical has received increasing attention in the discussion of absence seizures. Numerous physiological experiments have confirmed the correlation between EIN and absence seizures. However, the dynamic mechanisms underlying this relationship are not...

Full description

Saved in:
Bibliographic Details
Published inElectronic research archive Vol. 32; no. 3; pp. 1533 - 1550
Main Authors Wu, Quanjun, Zhang, Zhu, Li, Ranran, Liu, Yufan, Chai, Yuan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of excitatory interneurons (EINs) in the cortical has received increasing attention in the discussion of absence seizures. Numerous physiological experiments have confirmed the correlation between EIN and absence seizures. However, the dynamic mechanisms underlying this relationship are not well understood, and there are some challenges in selecting appropriate stimulation strategies for pyramidal clusters. In this study, we incorporated EIN into the previous Taylor model and developed an improved thalamocortical coupled model consisting of ten neuronal populations. Initially, we investigated the excitatory induction effect of EIN to pyramidal clusters and the external input of EIN. Then, four different targeted treatment approaches (deep brain stimulation (DBS), current balanced biphasic pulse (CBBP), 1:0 coordinated resetting stimulation (1:0 CRS), and 3:2 CRS) were applied to the pyramidal clusters. Moreover, we established two quantitative indices to evaluate the stimulation effects. The results showed that modifying the external input of EIN and the coupling strength projected onto the pyramidal clusters can effectively transition the system from an absence seizure state to other normal states. Additionally, inputs from the left compartment were found to reduce the generation of abnormal discharge regions in the right compartment. Furthermore, considering the treatment effects and current consumption, the 3:2 CRS stimulation strategy appeared to be the most suitable treatment approach for the pyramidal clusters. This work introduces a novel coupled model containing EIN, which contributes new theoretical foundations and insights for the future treatment of absence seizures.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2024070