Higher atmospheric aridity-dominated drought stress contributes to aggravating dryland productivity loss under global warming

Dryland ecosystems are highly vulnerable to extreme droughts under climate change. Yet, response of vegetation productivity across global drylands to changes in drought stress in a warming climate remains obscure. Here, we investigated future changes in drought stress, characterized by low soil mois...

Full description

Saved in:
Bibliographic Details
Published inWeather and climate extremes Vol. 44; p. 100692
Main Authors Yu, Xiaojing, Zhang, Lixia, Zhou, Tianjun, Zheng, Jianghua, Guan, Jingyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dryland ecosystems are highly vulnerable to extreme droughts under climate change. Yet, response of vegetation productivity across global drylands to changes in drought stress in a warming climate remains obscure. Here, we investigated future changes in drought stress, characterized by low soil moisture (SM) and high vapor pressure deficit (VPD), under severe drought conditions and its impact on gross primary productivity (GPP) deviations in drylands, based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system model (ESM) simulations. Under both intermediate (SSP2-4.5) and high (SSP5-8.5) emission scenarios, the dryland ecosystems are projected to experience more intense, extensive and frequent severe drought events owing to increasing VPD. The probabilities of high VPD-dominated drought stress in the end of the 21st century would be nearly double (2.1–2.4 times) of the present-day (39%). Excluding the carbon dioxide (CO2) fertilization effect, the annual GPP loss caused by severe drought is projected to further deteriorate over more than half fraction (56.9–70.9%) of global vegetated dryland areas, reaching 2.0 (1.9–2.2) times of the present-day (with an area-weighted total of −21.5 KgC m−2 yr−1) by the end of the 21st century. Such aggravating reduction is predominantly induced by drought stress with higher-than-usual VPD anomaly. The high VPD-dominated drought stress would lead to approximately 100% (95–102%) of annual aggregated dryland GPP loss by the end of 21st century from the present-day 68%. Our results suggest an increasing risk of high atmospheric aridity-dominated drought stress on dryland ecosystems. It is of great urgency to make adaption and mitigation strategies for the natural and cultivated vegetation in drylands.
ISSN:2212-0947
2212-0947
DOI:10.1016/j.wace.2024.100692