Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods
Long-term exposure to high concentrations of fine particles can cause irreversible damage to people’s health. Therefore, it is of extreme significance to conduct large-scale continuous spatial fine particulate matter (PM2.5) concentration prediction for air pollution prevention and control in China....
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 3; p. 467 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Long-term exposure to high concentrations of fine particles can cause irreversible damage to people’s health. Therefore, it is of extreme significance to conduct large-scale continuous spatial fine particulate matter (PM2.5) concentration prediction for air pollution prevention and control in China. The distribution of PM2.5 ground monitoring stations in China is uneven with a larger number of stations in southeastern China, while the number of ground monitoring sites is also insufficient for air quality control. Remote sensing technology can obtain information quickly and macroscopically. Therefore, it is possible to predict PM2.5 concentration based on multi-source remote sensing data. Our study took China as the research area, using the Pearson correlation coefficient and GeoDetector to select auxiliary variables. In addition, a long short-term memory neural network and random forest regression model were established for PM2.5 concentration estimation. We finally selected the random forest regression model (R2 = 0.93, RMSE = 4.59 μg m−3) as our prediction model by the model evaluation index. The PM2.5 concentration distribution across China in 2021 was estimated, and then the influence factors of high-value regions were explored. It is clear that PM2.5 concentration is not only related to the local geographical and meteorological conditions, but also closely related to economic and social development. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16030467 |