Virtual Antenna Arrays with Frequency Diversity for Radar Systems in Fifth-Generation Flying Ad Hoc Networks
This paper proposes the design of virtual antenna arrays with frequency diversity for radar systems in fifth-generation flying ad hoc networks. These virtual arrays permit us to detect targets from the sky with flying drones. Each array element is composed of a microstrip antenna mounted on quadcopt...
Saved in:
Published in | Applied sciences Vol. 14; no. 10; p. 4219 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes the design of virtual antenna arrays with frequency diversity for radar systems in fifth-generation flying ad hoc networks. These virtual arrays permit us to detect targets from the sky with flying drones. Each array element is composed of a microstrip antenna mounted on quadcopter drones and is virtually connected with the other elements. The antennas are tuned to work at the lower fifth-generation frequency band of 3.5 GHz. The design process considers the optimization of frequency offsets and positions for each element to obtain a side lobe level reduction. This methodology is carried out by particle swarm optimization. Several design examples are presented with random frequency offsets and non-uniform positions. These designs are compared to uniform-spaced arrays excited with Hamming frequency offsets. The simulation results show that using random frequency offsets and non-uniform positions provides a minor side lobe level reduction. This research demonstrates the feasibility of using virtual arrays for radar systems in fifth-generation flying ad hoc networks. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14104219 |