Selenoproteins in Archaea and Gram-positive bacteria

Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1790; no. 11; pp. 1520 - 1532
Main Authors Stock, Tilmann, Rother, Michael
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0304-4165
0006-3002
1872-8006
DOI:10.1016/j.bbagen.2009.03.022