Wearable Real-Time Gesture Recognition Scheme Based on A-Mode Ultrasound

A-mode ultrasound has the advantages of high resolution, easy calculation and low cost in predicting dexterous gestures. In order to accelerate the popularization of A-mode ultrasound gesture recognition technology, we designed a human-machine interface that can interact with the user in real-time....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 2623 - 2629
Main Authors Lu, Zongxing, Cai, Shaoxiong, Chen, Bingxing, Liu, Zhoujie, Guo, Lin, Yao, Ligang
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A-mode ultrasound has the advantages of high resolution, easy calculation and low cost in predicting dexterous gestures. In order to accelerate the popularization of A-mode ultrasound gesture recognition technology, we designed a human-machine interface that can interact with the user in real-time. Data processing includes Gaussian filtering, feature extraction and PCA dimensionality reduction. The NB, LDA and SVM algorithms were selected to train machine learning models. The whole process was written in C++ to classify gestures in real-time. This paper conducts offline and real-time experiments based on HMI-A (Human-machine interface based on A-mode ultrasound), including ten subjects and ten common gestures. To demonstrate the effectiveness of HMI-A and avoid accidental interference, the offline experiment collected ten rounds of gestures for each subject for ten-fold cross-validation. The results show that the offline recognition accuracy is 96.92% ± 1.92%. The real-time experiment was evaluated by four online performance metrics: action selection time, action completion time, action completion rate and real-time recognition accuracy. The results show that the action completion rate is 96.0% ± 3.6%, and the real-time recognition accuracy is 83.8% ± 6.9%. This study verifies the great potential of wearable A-mode ultrasound technology, and provides a wider range of application scenarios for gesture recognition.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2022.3205026