Electromagnetic-Shocking-Induced Interface Healing and Mechanical Properties Improvement in Pre-Bonded Stainless Steel
Hot-deformation pre-bonding is a newly developed method to avoid smelting defects in large stainless steel billets, in which the high-quality interfacial connection needs to be realized as a key guarantee. In this work, a novel electromagnetic shocking treatment (EST) method, as a special way to app...
Saved in:
Published in | Metals (Basel ) Vol. 13; no. 12; p. 2004 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hot-deformation pre-bonding is a newly developed method to avoid smelting defects in large stainless steel billets, in which the high-quality interfacial connection needs to be realized as a key guarantee. In this work, a novel electromagnetic shocking treatment (EST) method, as a special way to apply an external physical field, was proposed to introduce the hot-deformation pre-bonded austenitic stainless steel. It is demonstrated that EST can efficiently optimize the hot-deformation pre-bonded interface and restore the tensile properties of pre-bonded stainless steel within several seconds. The interface healing behaviors induced by EST were analyzed via the in situ observation of an optical micrograph, scanning electron micrograph, as well as electron backscattering diffraction. The optimization of the interface connection is mainly attributed to the fact that EST can act on the interface locally, leading to the healing of voids at the interface accompanied by a reduction in stress and the decomposition of oxide. In addition, EST plays another important role in adjusting the texture difference at both ends of the interface, which can further improve the mechanical properties. The results suggest that EST exhibits great potential in promoting the hot-deformation pre-bonding of large billets. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met13122004 |