Enhanced Secure Wireless Information and Power Transfer via Intelligent Reflecting Surface

In this letter, an intelligent reflecting surface (IRS)-aided secure wireless information and power transfer system is studied. To maximize the harvested power of energy harvesting receiver (EHR), we optimize the secure transmit beamforming at the access point (AP) and phase shifts at the IRS subjec...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 25; no. 4; pp. 1084 - 1088
Main Authors Shi, Weiping, Zhou, Xiaobo, Jia, Linqiong, Wu, Yongpeng, Shu, Feng, Wang, Jiangzhou
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, an intelligent reflecting surface (IRS)-aided secure wireless information and power transfer system is studied. To maximize the harvested power of energy harvesting receiver (EHR), we optimize the secure transmit beamforming at the access point (AP) and phase shifts at the IRS subject to the secrecy rate (SR) and the reflecting phase shifts at the IRS constraints. Due to the non-convexity of optimization problem and coupled optimization variables, we convert the optimization problem into a semidefinite relaxation (SDR) problem and a sub-optimal solution is obtained. To reduce the high-complexity of the proposed SDR method, a low-complexity alternating optimization (LC-AO) algorithm is proposed. Simulation results show that the harvested power of the proposed SDR and LC-AO methods approximately double that of the existing method without IRS with the same SR. In particular, the proposed LC-AO achieves almost the same performance as the proposed SDR but with a much lower complexity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.3043475